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はじめに

　近赤外領域の光を用い生体組織の酸素代謝をモニター

する試みは1977年J6bsisら1）の報告に始まり以後、無侵

襲生体計測法の一つとして注目を集めている。この領域

の光は生体組織で散乱され難くしかも生体物質による吸

収減衰が少ないため良好な組織透過能をもつ。著者は

700－1200nmの近赤外光の持つ優れた透過性を利用して脳、

筋肉などのヘモグロビン（Hb）酸素濃度、血液量、　cyt．

oxidase（aa3）酸化還元レベルの測定を試みてきた2）　3）。

本稿では動物実験による基礎的検討とその臨床応用につ

いて紹介し今後の研究課題を探りたい。

1）生体組織での分光測定とその限界：

　生体の分光測定は血球をはじめ多くの散乱体を含むた

め言わば濁った不均一試料を測定することになる。この

場合の測定には従来から実用的な二波長法や差スペクト

ル法が応用されてきた4）。一般的に透明試料の測定で成

立するLambert－Beer法則を懸濁試料に当てはめると、あ

る波長λの照射光量IO、透過光量1とすると、

　　Log　loAZIR＝eRcd　＋　ls　・一…　（1）

　　　ε：吸光係数、c：濃　度、　d：光路長、

　　　1s：散乱反射による減衰光量。

と書くことができる。即ち透過光量変化の対数Log　Io／1

（吸光度）が濃度変化（c）に比例することが必要であ

る。実際に生体組織の測定では組織に入る光量Io、光路

長d、散乱Isの正確な測定は不可能に近い。そこで私ど

もは基準となる元の状態（a）から何等かの操作により

生じた別の状態（b）との差を追跡する場合が多い。

波長λについて

状態（a）では

　　Log　loAII　At　＝＝ei　cad　十lsa　一・　〈2）

状態（b）では

　　Log　loA／1　ab　＝eA　cb　d　十lsb　・一　（3）

と書け、　（a）→（b）に変化すると（2）　（3）式よ

り、LogIab／lza＝εA　（cd－cb）　d＋（lsa

－lsb　）　・一　（4）

となり散乱などの影響はほぼ等しいとするとIsa≒Isb、

光路長dは定数（同一波長では変化しない）となるため

（4）式は

　　LOg　IAb　／1　Ra　＝K　（c”　一cb　）…　（5）

となる（εd＝k）。即ち透過光量変化の対数（吸収変

化）が濃度変化（△Cニca－cb）に比例する事とな

る。このLambert－Beer則が近赤外領域（700－1200nm）では

生体組織が強力な散乱即くオパールグラス）として働く

ため4）近似的に成立する事が証明されている5）。

　実際に近赤外光を用いてかなり厚みのある生体組織の

透過光測定をする場合、通常検出する透過光量自体が少

なく例えば脳Hbの酸素化→脱酸素化に伴う吸収変化

（△Ia→b）は透過光量1に対してかなり大きくなり散乱、

反射などの影響を簡単に無視できない。そこで複数個

（3～4）の波長を用いて各波長毎に上述の（4）式を

解くアプローチ（多波長解析）が必要となる（後述）。

　何れにせよ生体を対象とした分光測定では組織に入る

光量Io，透過距離dを知ることができないため組織での

絶対吸光量を決定できない（吸収差しか解らない）。一

般的に吸光度変化のスケールを検出器からの出力（1）

を100％にとり測定光をカットした場合を0％として決

めている。それ故測定した吸収差が全体の何割に当たる

か定量的な議論はできない。後述するが動物実験の場合

は酸素→窒素呼吸（好気→嫌気灌流）に切り替え（状態

a→b）full　scale（最大変化量）を求める事ができ、

これを用いて組織酸素濃度の定量化が可能となる2）3）。

しかしヒトを対象とする限り好気→嫌気に伴う最大変化
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量を知ることは不可能である。現在のところヒトでの定

量的議論は困難である。

2）ラット脳吸収スペクトル：

　脳組織では近赤外領域に特徴的な吸収スペクトルをも

つ吸光物質はHb，　Cyt．　oxidaseなどに限られている。こ

れら吸光体の分光学的特性、吸光変化の酸素親和性など

基礎的な問題については別の文献に譲る6㌔図一1はラ

ットを対象に95％02＋5％CO2呼吸時をbase　lineに

とりN，ガス吸入に切り替えた場合（嫌気時）の差スペ

クトル（実線）を示した。ついで同一ラットで人工血液

（Fluoso10A）による全血置換を行い同様な操作で得ら

れた差スペクトルを破線で示してある。これはCyt．　ox－

idase（aa3）の銅の酸化（Cu＋→Cu＋＋）に由来すると言わ

れ酸化型（Cu＋＋）では830－840nmに極大吸収を持ち還元

（Cu＋）されると吸収が消失する事をあらわす。しかも

780mより短波長域では酸化還元による吸収変化のない

事を示し実線の脳スペクトルからCyt．　aa3のそれを差し

引いた一線（点線）が血液Hbのスペクトルに一致してい

る。これより780nmより短波長を用いると脳Hbのより正
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図1）：ラット脳に於けるヘモグロビン（Hb）およびCyt．

　　　oxidaseの近赤外スペクトル。

　　　95％02吸入時をbase　lineにとりN2ガス呼吸に切

　　　り替えた場合の差スペクトルを示す。　（文献7よ

　　　り引用）
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確な測定が可能となる。　700－780nmの近赤外二波長を用

いる計測法については著者の文献を参照されたい7）。

3）三波長を用いる脳Hb量の計測法：

　臨床使用を目的に3種（780，805，830nm）の半導体レー

ザーを光源に用いる透過測定法を紹介する（図一2）。

前述のLambert－Beer則を適応すると、各波長における

Hb吸収変化（△Aλ・＝LogIλ・／Iza）は前述の

（4）式を用いると

　AA　780－Kl　A［HbO，］　＋Kl’A［Hb］＋AS（780）

　　　　　　　　　　　　　　　　　…　（1）

　AA　830－K2・A［HbO，］　十K2’　A［Hb］＋AS（830＞

　　　　　　　　　　　　　　　　　一・　（2）

　△A　　805＝K3　△［HbO2］　＋K3’△［Hb］一トムS（805）

　　　　　　　　　　　　　　　　　・一　（3）

と書ける。ここでKIK1’、K2K2’、K3K3’は波長780，

830，805nmにおける酸化Hb，還元Hbの吸光係数を示す。

△［HbO2］、△［Hb］は酸化および還元Hb量の変化量（前述

の△C）を示す。△sは散乱による吸光変化（Isa－

Isb）を表し、近赤外領域では使用波長が互いに近接し

ていると△s780ニムs805＝△s830＝S（定数）、

さらに波長805nmがHbの等吸収点のためK3＝K3’と置き換

えられ、この波長の吸光変化（△A805）をreference

として用いると、これより

　AA　780－AA　805一　（Kl－K3）　A［HbO，　］

　　　　　　　　　＋　（Kl’　一K3）　A［Hb］…　（4）

　AA　830－AA　805＝　（K2－K3）　A［HbO，　］

　　　　　　　　　＋　（K2’　一K3）　A［Hb］…　（5）

が得られる。この両式を解き、吸光係数比K1／K3，　Kl’／K

3，K2／K3，　K2’／K3等を実験的に求めると、△［HbO2］，

△〔Hb〕，△［Hb］t（ニム［HbO2］＋△［Hb］）の演算式が得

られる。しかも（4）（5）式を用いると組織内での散

乱の影響や光学的ゲタの変化をキャンセルする事ができる。

即ち、

　A［HbO，］一一3．0　AA　805＋3．0　AA830

　　　　　　　　　　　　　　　　　　　一一一・・　（6）

　A［Hb］　＝一1．6　AA　780－2．8　AA　805＋1．2　AA　830

　　　　　　　　　　　　　　　　　　　一一一　（7）

　A［Hb］t－1．6　AA　780－5．8　AA　805＋4．2　AA　830

　　　　　　　　　　　　　　　　　　　・・一・・　（8）

以上の演算式が得られる。なお吸光係数決定法の詳細は

著者の文献を参照されたい7）8㌔
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図2）：近赤外分光測定システムの概要。　（文献8より引

　　　用）

4）ラット脳でのHb，　Cyt．　aa3の分光測定：

　前述の演算式（6）　（7）をin　vivoに検定する目的

でラットの吸入気酸素濃度を95％から0％まで変化させ

た記録を図一3に示す。吸入酸素濃度5～7％でほぼ50
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図3＞：ラット脳を用いた酸化Hb及び還元Hb量算出演算式

　　　のin　vivo検定　　（文献13より引用）

％のHbが脱酸素化されN，吸入下に頸静脈より出血させる

と還元Hb量のみ減少している。同時に等吸収点805nmの

吸収により血液量の変動を見ると3～5％02こ入で増加

し脱血により減少している。これらの結果はin　viVOに

於ける本演算式の信頼性を裏ずけたと言える。次に従来

の二波長で調べたラット脳の分光測定例を示す。この場

合、脳Hbの酸素化脱酸素化の変化を700－805nm、　Cyt．

aa3の酸化還元レベルを830－805（940）nmの二一壱越収

差から求めte　2〕　3）。十一4は上段に吸人気02濃度に対す

る動脈血Hbおよび脳内Hbの酸素化レベルを下段にCyt．

aa。の酸化還元レベルを示した。動脈血Hbは30％以上で

完全に飽和されるが脳Hbは30％以上でさらに酸素化され
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図4）：脳内Hb酸素化レベルおよびCyt．　oxidase酸化還元

　　　redoxと吸入気酸素濃度との関係。　（文献3より

　　　引用）

95％02ではHbの90％以上が酸素化されている（5％CO2

呼吸の場合）。Cyt．　oxidaseは30％02以上では少なくと

も80％以上が酸化型であり、一方10％02以下で還元

され、特に5％02以下ではほとんど還元型になる。しか

しこの二波長測定では図1の脳スペクトルから明らかな

ごとく、特に低酸素吸入の場合に脳Hbの吸収や血液量の

変化などの影響を受ける可能性が高く今後の研究課題で

ある。

　図一5は光学的に得た脳内Hbの酸素化レベルの変動を

同時に採血した内頸静脈のガス分析値と対比した成績で

ある。この両者は極めてよい相関を示し脳内Hbの酸素化

レベルは頭蓋内（脳内）静脈血の酸素飽和度を光学的無

侵襲に捕らえていると結論される。次に脱血、返血操作

　　　　　　　　　　　　　　　　　　　　　　　65
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　　　　　　　　　　によりラット脳血液量を変化させた場合の記録を図一6

　　　　　　　　　　に示す。演算式より求めた脳血液量および805nmの吸光
　　　　　　　4ち
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図5）：内面静脈血酸素飽和度と脳内Hb酸素化レベルの関

　　　係（文献3より引用）

変化から見た血液量は脱血により減少し返血後は対照時

に復している。脳Hb酸素化レベルは血圧下降と共に低下、

返血により回復し各指標に良好な再現性が認められる。

次にラットにけいれんを誘発し脳代謝を元進させた場合

を図一7に示す。PentyIene　tetrazol（PTZ）20mg静注に

　　　　　　　PTZ　（20mg）　Seilures
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　図6）：脱血、輸血による脳酸化Hb及び血液量の変化

　　　　　（文献7より引用）
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図7）：PTZ（20mg）静注によるけいれん誘発幽く初期）の

　　　トレース

より脳波にburstを認めると同時にCyt．　aa3に～10％の

酸化型の増加と脳Hb酸素濃度および脳血液量の増加を認

めた。これは血圧上昇により脳血流が増加した結果、需

要を上まわる酸素が供給され脳組織は低酸素に陥らない

ことを示す。一方けいれんが重記すると図一8に示す如

く脳Hbの酸素化レベルは不変か減少の傾向を示し（血圧、

脳血液量はほとんど変化しない）脳Cyt．　aa3がむしろ還

元される。前者ではMt呼吸鎖の回転冗進（酸化的リン酸

化の促進）を示唆し後者のけいれん重積状態では組織低

酸素と酸素利用の抑制が予想され組織随害に連なると考

えられる。さらに脱血ショック（組織低酸素）モデルに

おいて再輸血（再訴流）後の脳組織代謝の変動を調べた。

短時聞ショックでは返血後の組織酸素消費の充進、Cyt．

aa3の酸化へのshift（over－oxidation）を認め長時間シ

ョック後の再灌流では組織酸素利用の低下とCyt．　aa3の

hypooxidation（Cyt．　oxidase　redoxが対照時まで回
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図8）：けいれん重積状態での記録

復しない）が観察され、個体の予後と相関した9）。最近

Tamuraらは吸入気02濃度を順次変化させた場合、　Fio210

％以下でCyt．　oxidaseの還元が始まり同時に記録した

NMRの信号においてPCr／Piの低下がoxidaseの還元に平

行すると述べているω）。

　以上をまとめると、　（1）酸化Hb量［HbO，］測定により

脳、筋肉中の静脈性血液酸素濃度が解りSaO2の同時測定

により組織静動脈酸素較差が無侵襲に求められる。　（2）

酸化および還元Hbの総和である全Hb量［Hb］tの測定から

組織血液量の変動と組織Hbの酸素飽和度を知る事ができ

る（後述）。さらに（3）Cyt．　oxidaseの酸化還元のモ

ニターによりMtへの酸素供給の程度（酸素濃度）のみな

らず脳内エネルギー状態、酸素利用能等を無侵襲に捕ら

えることが可能と結論される。

5）ヒト筋肉での測定：

　近赤外光を用いたヒトでの測定報告は今だ少ない。著

者らは本法の臨床応用を目的にまず成人の筋肉での測定

を試みた。図一9は、5～10Kgのおもりを持ち上げた場

　　　　囮＾RM　　　　　圃F。RE＾RM
　おずロ　　し
　　　　　　　　　　　　　　　ロ

ー1一一「許蜘㌦（〆一

司
訟門

図9）：筋肉仕事時の筋組織酸素代謝

合の上腕及び前腕部筋肉の酸化Hb及び全Hb量の変化を反

射法を用いて測定したものである。上腕では血液量が増

加し、このため筋肉仕事に拘らず筋肉酸素濃度は僅かな

巴1

ぐd●cr，

　　　　⊥り　　けぴロ

垂1020D
ぐd●or
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減少に留まった。一方強い筋収縮を要す前腕では筋肉血

液量が著減し酸素の供給低下により組織低酸素（HbO2の

減少）を来し筋肉疲労を生じた。次に上腕に血圧マッシ

ェットをまき動脈圧以上のカブ圧を加え急速に解除した

トレースを図一10に示す。駆血により前腕筋肉酸化Hb量

　　　TRANSMSSStON　SPECTROPHOTOMETRY
　　　　　　Cuff　pressure

　　　　　　　160mmHgFReleese　OmmHg

署臨 將ｬ　｝”1　m‘”’一l

g　1　’tN一　’x．．．．．．．一一一L’

　　　　　　A　（HbO．）
6〔HbO＝⊃＝一3ムA●05十3△A脚

ム【岡b〕　＝1．5ムA7●0－2．8tSAm＋1．2ム《蜘

ム｛騰》Of〕零1．6ムA780－5，8凸A●05＋4．4ム《●30

　　　　　　　　　　　　　　　（25yrs．mele）　630906
　　　Chances　ef　Oxy一一Hb．　Deexy－Hb　oentent，　and　bloed　vehme　in　the　tore－srm　on

　　　kvflating　blood　pr“sur一　cvft　trver　br－chitm，．

図10）：上腕駆血、解除時の筋肉血液量の変化

の減少と還元Hbの増加を認めるが血液量自体は変化して

いない。駆血解除により血液量の増加を認めこれがおも

に反応性充血による酸化Hb量の急速な増加に基づくこと

が解る。次に前腕に送受光プローブを装着し透過法によ

りHb量の変動を記録した図一11を提示する。心臓の位置

より上肢を挙上あるいは下降させた場合のHbO2、　HbVol．

の変化を記録しその比（△HbO2／△HbVo1．）をとると筋

肉血液（静脈性）の酸素飽和度が無侵襲に求められる

11）。以上の結果は何れも前述のHb演算式を用いての測

定でありこれが筋肉測定に応用可能な理由として（1）

測定部筋肉ミオグロビン（Mb）、Cyt．　oxidase量が短時

間の測定では一定である事、　（2）Mb，　Cyt．　oxidaseの

酸素親和性がHbの20－200倍と極めて大きく（大部分酸

素と結合している）ために通常の測定では組織内血液Hb

の吸光変化を選択的に計測している事による。

　　　　　トA・m・Up－1　　　　ト・m伽・一→
　ロ　　し

lP夷一孫一
d“cr’

ﾘ碧評」二丁塾

禦く捲「絡
　d●cr。

M姻mvo剛55醜齢r縫i㎝〔S》O，）　can　b●estintat■d　ftOtii　the　for剛ri昌　SvOI■・AHbOi！4恥

velL，M●‘AHb》ot．■AHb◎，十AHb｝，　on　th●●55Utnρtton　th●t　mu5cle　bbo6　flOvv　and　OXV9■n　ton－

SUtnptmn　do　not　chang●tnuch　dUtlng　th●meneeuvec　af肥pd㎝up“60頓rn．0●tas　otrtaned
fF㎝3●dutt　votunt●●r5・Hb：h●mogeob，n，00＝optml　dert5tty，　Fρ．：fb●r　ept鴎s．　S．P．O．；stitXXIe

phOtodede．

図11）：筋肉組織血液酸素飽和度の測定
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6）ヒト脳での測定：

　ヒト脳を対象とした近赤外計測の試みは、成人では

Ferrariら（1986）12）、著者ら（1987）13）に始まり2、

3の報告があるが今だ極めて少ない。本法の臨床応用は

主としてNICUにおける未熟児、新生児等の頭部酸素モニ

　　　　　けソドリロ　はゆり

　　、嵐　目5≡≡≡ヨ　　　　　　ト1肌一→

：：1悲傷葦莚‘

　　d●cr．　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　邸ogσ

　　Contmus　r㎜にorh80t　h●mogbObm　oxy9●natPt●nd　bteod》ehim●d●cre■s●en　th●

　　br・lfi　durmS》。iuntiry　hyperventilatien　bv　za　vrs・ld》。tSnt●・r　subl・ct・Fib●r　・ptlCS

　　prob●5　PbC●d　o弼響or●h●8d「or　r●fbcヒ●n‘●吊Om覧O「旧9・

図12）：強制過換気による脳組織酸素濃度の低下　　（文

　　　　献8より引用）

ターに始まりJobsisら（1985）14）、Delpyら（1986）15〕、

戸刈ら（1987）16）の報告がみられ今後の発展が期待され

る。著者らの測定例を2、3、紹介すると図一12は健康

成人に1分間の過換気を行わせたトレースである。脳血

液量の減少を認めこれが主に酸化Hb量の減少に基づく事

が解る。過呼吸によるhypocapneaが脳血管を収縮させ脳

血液量が減少する。即ち、酸素供給低下が生じ一・過性の

脳低酸素によりめまいを訴えると理解される。興味ある

事実は被験者により過呼吸後の回復過程が異なる点であ

り今後、脳血管疾患等の診断、治療効果判定等に応用可

能であろう3）。次に64才男性、腰上手術終了時、酸素吸

入下に手術台の頭部を15度程挙上し水平に戻す操作を反

復しつつ測定した症例を図一13に示す。頭部の挙上によ

り脳酸化Hbおよび全Hb（血液）量の何れも減少している。

この操作中に脳血流、酸素消費が大きく変化しないと仮

定すると脳血液（静脈性）酸素飽和度は△［HbO，］／△［H

b］tの式1t）から求められ60～64％と計算された（患者

は半覚醒状態）。

　　　　　1『Ho8d　Up　　　　　　　　　　　　　　　15．H●8d　Up
　　　　　　　　　　b8ck　to　level　　　　　　　　　　　　　　b●ck　to腫》el
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　Ut亦外分元伝の臨床応用として著者らは心臓手術時の

脳酸素モニターを試みている。図一14は4才児でVSD閉

鎖時の記録である。体外循環時の脳Hb酸素化レベル

（△HbO2）は開始前陣にほぼ等しく脳酸素濃度は良好に

保たれていた。脳血液量が僅かに増加の傾向（画譜）を

示すが終了後は自己心拍の回復とともに開始前に復して

いる。図一15は冠動脈バイパス手術に際して大動脈遮断

解除時に一時的にポンプ流量を減じ低血圧とした場合の

記録である。脳への血流低下により脳酸素化Hb量の減少

と還元Hb量の増加を認める。送三三のバランスがとれて

いる限り脳血液量はほとんど変化せずポンプ流量の回復

丁廟　　，100　　　11w 　　　　璽200
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図14）：小児心臓手術（体外循環時）の脳酸素モニター
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図15）：成人体外循環時の脳酸素濃度変化

　　6●cr，

　　ぬヨロ
恥．　Φ・・
41Hじ》d．1

　　6●◎r．

竃∵瓢＿鱒
！

　　　　　　　　　　　　　　　　　　　　　es12ZO
M慣●d‘■t●br●1》●n◎駈5“twetion　｛Sサ◎■，㎜噂b●●帆㎞ヒ●d　lmヒh●formu）■SvO冒一

nHbO・／At・回H三曲即1一甜齪。・＋』恥》・。・”駒・9脚駒・甑レ・旧b㎞」，b脚・・d
o翼γ‘●縄cen5蜘6醜暫のet購h　8臆●r　durit，S　監h●9臨■rゆ●u》●r　et　titting　贈℃門臨哩h　10一曾5■．

丁幅5暫」雌●■脚●mob』胎●d響r◎rn馴y7・CHO　petient　duri臼曜。翼γ嘱■胴繍●1醜め轟．　His　SoOコ脚●5

conststtt脚i魯h　9■一99瓢dvr‘ng　l閥●gur鯛剛瞳5●の6　Sv◎，　c8にu幅【●d匙。　b●60－54瓢．　Fib●r

尻鞘9P舶◎b●9　P塘●●d　oO　9◎r●h●●60t艦h●　4α騨山5tonGO「●r　r●fb6U躍鴇●翻噂n穐6レ餉嘱．　Hb：

圃tObin．　OO：OP伽撃0創lsitv・

図13）：脳組織血液（静脈血）酸素飽和度の推定

68

とともに脳酸素化レベルは対照時に復している。次に30

℃軽度低体温脳分離体外循環下に弓部大動脈置換を行っ

た症例を図一16に示す。これは分時800m1の流量で頭部

灌流施行時に左頸動脈灌流が一時的に障害された場合の

記録である。左浅狭頭動脈圧の急激な低下により前額部

でモニターした脳酸化Hb量の減少と還元Hb量の増加を認

める。一方、対側よりの側副血流と脳自動調節により脳
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血液量はほとんど変化せず灌流再開により酸素化Hb量は

速やかに遮断前値に復している。しかし20～22℃前後の

deep　hypothermiaでは一側頸動脈遮断の場合、遮断側動

脈圧の下降に拘らず脳酸素化レベルは殆ど変化しない

17）。著者が軽度低体温心肺バイパス10例で竿石流圧と

脳酸素化レベル、血液量の関係を調べた成績では平均灌

流町60mmHg以上では脳Hb酸素濃度、血液量ともにほぼ一

定に保たれ、それ以下では両者に減少の傾向を認めた。

しかし脳血液量の減少は同時に観察される還元Hb量の増

加により低値に留まっていtc　i　7）。これらの成績は軽度

低体温下においても明らかな脳血管自動調節能の存在を

示唆し平均下流圧50mmHg以下になると脳血流量の低下が

始まると考えられる。以上に紹介した体外循環時のデー

タは現行の体外循環手技が脳酸素濃度を生理的範囲に維

持している事を示し、さらに脳血液量の推移が体外循環

中の必聴血バランスをよく反映することが明らかとなっ

た。

翫醐Fbワ：　　　　　　　　　●oo吊曜㎜　　　　　　　　　　　　　soo　me廟e　　　　　　　　　　　　eOO　mk曲Wh
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図16）：片側頸動脈遮断時の脳酸素化レベルの変動

　　　　　（文献17より引用）

　光学的に捕らえた酸化Hb量の挙動は脳組織静脈性Hbの

酸素化レベルを表す事実2）　3）から脳での酸素需給関係を

示すと言える。私共のヒトでの測定成績は理論的に妥当

な結果と考えられ無侵襲、簡便にこれらの情報が得られ

ており近赤外分光法の意義は極めて大きいと言える。

7）臨床応用の問題点：

　著者らはラット脳において波長780m以上の吸光度変

化が脳Hbの酸素化状態およびCyt．　oxidaseの酸化還元変

化に基づく事を示した（図一1）。従って脳Hbの正確な

測定には780mより短波長光の使用が望ましい7㌔しか

しこの領域の近赤外半導体レーザーの入手が困難のため

今回は780、805、830nmの三波長を用いる多波長解析

法を採用した。この測定法についてはラットによる基礎

　1990　Vol．　5

的検討から通常の臨床使用になんら問題のない事を確認

してある。

　　　　　　　　巴床Z剛の四闇鳳；

　t｝透遇測定を臼的とした高出力レーザー光醸め応用と安全性の亀露．

　2｝送受光プローブの軽量化、固魯腔と自作憧の改魯．

　3⊃外乱尭の旭光方法．

　4⊃測足積度の改養一三、　四波長測定法の録用。

　5⊃Cyt．oxidnseの正電な引定．

　6）Ub測定による各揃禰の鮫正方濫．嶺示方諺の鑓立。

　7｝測定データの定量｛し

　81データの巴床的旦“の薦乳

下17）：臨床応用の今後の課題

　現在、雌蕊外測定の最大の問題点は吸光変化の定量化

が極めて困難なことにある。ヒトを対象とする限り動物

実験に用いた嫌気一好気変化に伴うfull　scale（最大変

化量）を利用することはできない。現在までに幾つかの

定量化の試みがあるが確立されたものはない。著者らの

ヒトでの測定は光源の制約から主として反射法reflect－

ance　modeによった。この場合光の組織透過距離（光路

長）の算定が極めて困難である。著者はDelpyらle）、

北大応電研、田村教授ら（私信による）の実験結果に基

づき送受光プローブ問距離の4倍を平均光路長と仮定し

これを用いて吸光変化を△OD／cmと標示、異なった症例

間での測定値を標準化している。すでに1）の項で述べた

が生体計測の場合、例えば脳透過光に於けるHb絶対吸光

量の測定は現有装置では不可能である。そこで等吸収点

波長805nmのHb吸光係数（O．　88）を用い、ヒト成人脳の平

均血液量を5％と仮定し脳組織cm当りのHb吸光度を求

めるとO．　10D／cmと計算されるeこの値を用いると実際に

組織Hbの吸光変化量の測定値から酸化Hb量や血液量の変

動を％標示する事ができる。その精度には若干の問題を

含むが一つの標示法として利用している。

　最近、英国、Delpyis）らのグループは新生児多数例の

近赤外測定を通じて測定値の定量化と共に脳血流量、血

液量の算定法を提唱しており興味深い。何れにせよ現時

点では定量化が困難としても脳酸素濃度や血液量の増減

傾向を無侵襲に知ることができ他のバイタルサインとの

関係ずけによって充分モニターとして活用可能と考えら

れる。

　次に、臨床応用に当り本法の安全性が問題視される。

著者らの試作装置（先端レーザー出力10raW）を含め現在

使用されている装置（商品化されtcものはない）の光パ

ワーは米国レーザー安全規格19）の基準以下である。著
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者らの臨床例においてプローブ装着部皮膚に異常を認め

た例はなく、本法に起因する脳神経症状は経験していな

い。

　最後に脳細胞の酸素濃度や細胞機能に関する情報を直

接収集する目的でCyt．　oxidaseのredox測定を臨床に導

入する必要がある。現在の二波長測定では前述のごとく、

Hb吸光変化の関与を完全に除去する事ができず測定に誤

差を生ずる。Hazekiら20）はこの問題を解決すべくCyt．

aa3の吸収帯波長とその吸収のないHb波長を2個使用す

る三波長計測法を考案し選択的検出を試みている。著者

らも多波長解析法を用いて実用化に努めている。

おわりに

　近赤外光を用いる無侵襲生体計測法の概要を紹介した。

本法の臨床応用はようやく端緒に着いた所であり今だ解

決すべき問題点を含むが本法の無侵襲、簡便性から広い

範囲の臨床応用が期待される。最後に今後の課題を図17

に示し新しい光計測法としての発展を祈りたい。なお第

5回侵襲時の体液代謝管理研究会に発表の機会を与えら

れました事を深く感謝致します。
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